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bstract

icrowave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics were investigated as a function of packing fraction and
ond valence. For A2+B6+O4 specimens sintered at 800–1100 ◦C for 3 h, a single phase with a tetragonal scheelite structure was detected, and the
heoretical density was higher than 93% throughout the composition. Although the ionic polarizability of Ba2+ ion was larger than that of Ca2+ ion,
he dielectric constant (K) of BaB6+O4 showed a smaller value than that of CaB6+O4. These results could be attributed to changes of the packing

raction due to the effective ionic size. The Q·f value was largely dependent on the packing fraction, as well as the percentages of theoretical density.
he temperature coefficients of the resonant frequencies (TCFs) of the specimens were affected by the bond valence of oxygen. The specimens of
aMoO4 sintered at 1000 ◦C for 3 h showed the K of 10.8, Q·f of 76,990 GHz and TCF of −22.8 ppm/◦C, respectively.
2010 Elsevier Ltd. All rights reserved.
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. Introduction

During the past couple of decades, IC (Integrated Cir-
uit) technologies have been very successfully developed to
eet demand by integrating an increasingly higher number

f transistors on the chip, and most electronic systems have
een compacted while offering high performance and numer-
us functions. These integration activities will be accelerated
nd the working frequencies will be higher in the future (3G
obile (2.5 GHz), Bluetooth (2.5 GHz), GPS (Global Position-

ng System) (12.6 GHz), LMDS (Local Multipoint Distribution
ervices) (24–40 GHz), Automotive (77 GHz)).

With tremendous demand for immediate entertainment,
nstant access to information, and communications anywhere
t any time, dielectric materials for technologies related to the
ntegration of passives have been researched for the fabrica-

ion of microelectronic components for use in electronic systems
nd devices. Applicable material systems for integration tech-
ologies, MMIC (Monolithic Microwave Integrated Circuits)
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echnology of thin film, MCIC (Multilayer Ceramic Inte-
rated Circuits) technology based on LTCC (low-temperature
o-fired ceramics),1 and Embedded Passives technology of
eramic–polymer composites based on a multilayer PCB
Printed Circuit Board)2 are strictly restricted, and several
pproaches3 and modifications4 such as circuit technology and
rocess improvements have been undertaken to overcome these
imitations. Most investigations on material systems for GHz
pplication are mainly based on empirical approaches, such as
he addition of materials5 and/or formation of solid solutions6

ith suitable dielectric properties to the target, and the changes
f dielectric properties have been explained by the dielectric
ixing rule7 and structural change.8

Due to the nature of materials, their dielectric properties
re strongly dependent on the chemical nature of constituent
ons, the distance between cations and anions and the struc-
ural characteristics originating from the bonding type as well
s the composition of materials. The fundamental relation-
hips between the structural characteristics and the dielectric

roperties should also be identified in order to effectively
eek out new dielectric materials for GHz applications. Sev-
ral types of material system such as AO2, ABO3 and A(B,
’)O3 have been investigated to search the relationships between

mailto:eskim@kyonggi.ac.kr
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icrowave dielectric properties and the characteristics of crys-
al structure.9–11 Therefore, the present study focuses on the
ependence of the microwave dielectric properties of scheelite
ompound, A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics
n its structural characteristics.

. Experimental procedure

A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) was prepared by
he conventional mixed oxide method. CaCO3, PbO, BaCO3,

oO3, and WO3 powders with high-purity (99.9%) were used
s starting materials. They were milled using ZrO2 balls for 24 h
n ethanol and then dried. The dried powders were calcined from
00 to 700 ◦C for 3 h, and then milled again for 24 h. The milled
owders were pressed into 10 mm diameter disks under pressure
f 1500 kg/cm2 isostatically. These disks were sintered from 800
o 1100 ◦C for 3 h in air.

Crystalline phases of the specimens were identified with
owder X-ray diffraction patterns (D/Max-3C, Rigaku, Japan).
icrostructure was observed using a scanning electron micro-

cope (JSM6500F, JEOL, Japan). Bond lengths of the specimens
ere obtained from geometric calculations based on Rietveld

efinements of XRD patterns. The dielectric constant (K) and Q
alue at frequencies of 10–11 GHz were measured by the post-
esonant method developed by Hakki and Coleman.12 TCF was
easured by the cavity method13 at frequencies of 10–11 GHz

nd a temperature range of 25–80 ◦C.

. Results and discussion

.1. Crystal structure and physical properties

A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) scheelite com-
ound crystallize in tetragonal symmetry with four molecules
er unit cell (space group: I41/a), as shown in Fig. 1. A-site
nd B-site ions are positioned at the corner and face-center
f the primitive unit cell, respectively, while the oxygen ion
s located at the corner of a tetrahedron that also include two
-site ions and one B-site ion. Each B-site ion is surrounded
y four oxygen ions, while eight oxygen ions are near to the
-site ion due to the ionic size differences between the A-site

nd B-site ions. The coordination number of oxygen ion, i.e.,
, agrees well with the neutrality condition of Pauling’s law.
- and B-site bond strengths, defined by the ionic valence over

he coordination number, are 2/8 and 6/4, respectively. The total
harge of cations to oxygen ions is the summation of the bond
trength multiplied by the coordination number on each cation
ite: (2/8 × 2) + (6/4 × 1) = 2, which corresponds to the charge
f oxygen ion. Therefore, the coordination numbers of A- and
-sites and oxygen ions are 8, 4, and 3, respectively. Each ionic
osition in a unit cell could be described as follows14: A-site
ation ((0, 0, 1/2), (1/2, 0, 1/4), (1/2, 1/2, 0), (0, 1/2, 3/4)), B-

ite cation ((0, 0, 0), (0, 1/2, 1/4), (1/2, 1/2, 1/2), (1/2, 0, 3/4)),
xygen ion ((x, y, z), (−x, −y, z), (x, 1/2 + y, 1/4 − z), (−x,
/2 − y, 1/4 − z), (−y, x, −z), (y, −x, −z), (−y, 1/2 + x, 1/4 + z),
y, 1/2 − x, 1/4 + z), (x = 0.241, y = 0.151, z = 0.081)).14

w
a
r

Fig. 1. Crystal structure of A2+B6+O4 scheelite compund.

Assuming a hard sphere of ions, the bond lengths from the A-
nd B-site cations to oxygen ions could also be obtained from
ach ionic position and lattice parameters based on geometry, as
hown in Eqs. (1)–(4): there are eight bond lengths for the A-site
ation to oxygen ion (dA–O), where four of the bond lengths are
dentical, and two sets of different bond lengths, while four bond
engths for the B-site cation to oxygen ion (dB–O) are identical.

Four of bond lengths dA–O

=
√{(

1

2
− x

)
× a

}2

+
{(

1

2
− y

)
× a

}2

+ (z × c)2

(1)

Two of bond lengths dA–O

=
√{(

1

2
− x

)
× a

}2

+ (y × a)2
{(

1

4
− z

)
× c

}2

(2)

Two of bond lengths dA–O

=
√{(

1

2
− y

)
× a

}2

+ (x × a)2
{(

1

4
− z

)
× c

}2

(3)

Four of bond lengths dB-O

=
√

(x × a)2 + (y × a)2 + (z × c)2 (4)
here a and c are lattice parameters, and x = 0.241, y = 0.151,
nd z = 0.081 are parameters for the position of the oxygen ion,
espectively.
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Table 1
Physical properties of A2+B6+O4 scheelite compounds.

Compounds Calcination/sintering temperature (◦C) Lattice a (Å) Parameter c (Å) Sintered density (g/cm3) Theoretical density (%)

CaMoO4 600/1000 5.2340 11.4584 4.158 98.2
PbMoO4 400/850 5.4422 12.1237 6.436 94.8
BaMoO4 450/800 5.5888 12.8412 4.684 95.2
CaWO4 700/1100 5.2465 11.4008 5.990 98.3
PbWO4 550/850 5.4761 12.0764 8.090 96.9
BaWO4 600/850 5.6218 12.7359 5.932 93.3
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Fig. 2. SEM micrographs of

From the X-ray diffraction (XRD) patterns of A2+B6+O4
A2+: Ca, Pb, Ba; B6+: Mo, W) compounds sintered from 800
o 1100 ◦C for 3 h, a single phase with a tetragonal scheelite
tructure was confirmed throughout the composition. Due to the
ncrease of effective ionic radius of the A-site ion in A2+B6+O4
cheelite (Ca2+ = 1.12 Å, Pb2+ = 1.29 Å, and Ba2+ = 1.42 Å at
N = 8),15 the lattice parameters were changed as shown in
able 1. Also, the theoretical density of the sintered specimens
as higher than 93%.
Fig. 2 shows the microstructure of the specimens sintered

rom 800 to 1100 ◦C for 3 h. A well-densified microstructure

as developed and there was no secondary phase for the entire

omposition, which agrees with the density results. Grain size
f A2+WO4 was slightly larger than that of A2+MoO4, while
he specimens showed difference in grain size with the A-site

i
A
T
a

able 2
icrowave dielectric properties of A2+B6+O4 scheelite compounds.

ompounds Calcination/sintering temperature (◦C)

aMoO4 600/1000
bMoO4 400/850
aMoO4 450/800
aWO4 700/1100
bWO4 550/850
aWO4 600/850
6+O4 scheelite compound.

ation of A2+B6+O4 ceramics, presumptively due to the dif-
erence of grain growth behavior based on the lower melting
oints of PbWO4 (1123 ◦C) and PbMoO4 (1060 ◦C) than those
f CaWO4 (1650 ◦C), CaMoO4 (1430 ◦C), BaWO4 (1470 ◦C)
nd BaMoO4 (1460 ◦C); PbB6+O4 showed larger grain size than
aB6+O4 and/or CaB6+O4.

. Microwave dielectric properties

Microwave dielectric properties of A2+B6+O4 specimens cal-
ined and sintered at each optimized temperature are shown

n Table 2. Comparing to the previous reports for AWO4 and
MoO4 (A = Ca, Sr, Ba), the Q·f values are slightly smaller and
CFs are larger than those of previous reports.16,17 These results
re possibly due to the differences of processing temperatures

K Q·f (GHz) TCF (ppm/◦C)

10.8 76,990 −22.8
25.4 35,150 −20.6

9.2 26,580 −16.9
10.4 76,550 −24.4
21.6 34,500 −22.2

8.2 21,120 −17.7
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Table 4 shows the bond valence of the ions of each site for
A2+B6+O4 scheelite compounds. For the specimens with the
same A-site ions, the bond valence of the A-site ions (VA)
decreased if the bond valence of the B-site ions (VB) increased.
734 E.S. Kim et al. / Journal of the Europe

uch as calcination and sintering temperatures. The dielectric
onstant (K) and Q·f value of the A2+MoO4 show larger values
han those of A2+WO4 for the same A-site cations, while the
icrowave dielectric properties of the specimens were strongly

ependent on the type of A-site cations of A2+B6+O4 compound.
At microwave frequencies, the dielectric constant (K) and

·f values are dependent on intrinsic factors, ionic polarizabil-
ties, and structural lattice vibrations, respectively, as well as
xtrinsic factors such as density, microstructure, and the sec-
ndary phases.18 For these specimens of scheelite compounds,
he effects of density and the secondary phase could be neglected
ue to the higher density above the theoretical density of 93%
nd the absence of detection of secondary phases through the
ntire composition.

As for the dielectric constant (K), PbB6+O4 showed a larger
ielectric constant than CaB6+O4 and/or BaB6+O4 due to the
arger ionic polarizability of Pb2+ (6.58 Å) relative to Ca2+

3.16 Å) and/or Ba2+ (6.40 Å).19 However, K of CaB6+O4 was
arger than that of BaB6+O4, even though the ionic polarizability
f the specimens with Ca2+ was smaller than those with Ba2+.
here is another factor affecting the dielectric constant of the
pecimens.

Generally, the specimens with large K show a small Q·f value,
nd the intrinsic factor on Q·f is the minimum loss related with
attice anharmonicity that can be expected for a particular crys-
al structure.18 Q·f values of CaB6+O4 were larger than those
f BaB6+O4, even though the dielectric constant of the speci-
ens with Ba2+ was smaller than those with Ca2+. In addition,

he Q·f value of BaMoO4 was lower than that of PbMoO4,
ven though the dielectric constant of PbMoO4 was higher than
hat of BaMoO4 with a similar theoretical density, as shown in
ables 1 and 2.

Therefore, the microwave dielectric properties were strongly
ependent on the structural characteristics. The structural char-
cteristics could be evaluated by the packing fraction and bond
alence, since these parameters are a function of unit cell vol-
me, effective ionic size, and bond strength, respectively.

Based on crystal structural considerations, the packing frac-
ion, defined by the summation of the volume of packed ions
ver the volume of a primitive unit cell, could be obtained from
q. (5) for an A2+B6+O4 scheelite compound:

acking fraction (%) = volume of packed ions

volume of primitive unit cell

= volume of packed ions

volume of unit cell
× Z

= 4π/3 × (r3
A + r3

B + 4 × r3
o)

a2 × c
× 4

= 4π/3 × (r3
A + r3

B + 4 × r3
o) × 4

a2 × c
(5)
here VA, VB, and VO are the volume of ions at each site, rA, rB
nd rO are the effective ionic radii at each coordination number,
and c are lattice parameters, and Z = 4 for a tetragonal scheelite
ompound.

F
p
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As shown in Table 3, packing fractions of the scheelite com-
ound were obtained from Eq. (5), and the dependence of the
·f value of the scheelite compound on the packing fraction is

learly confirmed in Fig. 3.
Another important dielectric property for GHz applications is

he temperature coefficient of resonant frequency (TCF), which
etermines the thermal stability of materials and devices. TCF of
aterials basically results from the temperature dependence of

he dielectric constant (TCK) related with the chemical nature
f constituent ions, the distance between cations and anions,
nd the structural characteristics originating from the bonding
ype. These structural characteristics could be evaluated by the
ond valence of ions, as the present authors previously demon-
trated these relationships between TCF and bond valance for
erovskite systems.11

From each bond length for A- and B- site cations to oxy-
en ions obtained from Eqs. (1) and (4), and bond valence
arameters20 for each ion, the bond valence of ions composing
unit cell was calculated by Eqs. (6) and (7):

i =
∑

j

vij (6)

ij = exp

{
(Rij − dij)

b

}
(7)

here Rij is the bond valence parameter, dij is the length of a
ond between atoms i and j, and b is commonly taken to be a
niversal constant equal to 0.37 Å.
ig. 3. Dependence of Q·f on packing fraction in A2+B6+O4 scheelite com-
ounds.
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Table 3
Packing fraction of A2+B6+O4 scheelite compounds.

Compounds rA (Å) (CN = 8) rB (Å) (CN = 4) rO (Å) (CN = 3) Unit cell volume (Å3) Z Packing fraction (%)

CaMoO4 1.12 0.41 1.36 313.90 4 61.6
PbMoO4 1.29 0.41 1.36 359.07 4 57.3
BaMoO4 1.42 0.41 1.36 401.09 4 54.3
CaWO4 1.12 0.42 1.36 313.82 4 61.6
PbWO4 1.29 0.42 1.36 362.14 4 56.8
BaWO4 1.42 0.42 1.36 402.51 4 54.1

Table 4
Bond valence of A2+B6+O4 scheelite compounds.

Compounds RA RB 4-(dA–O) 2-(dA–O) 2-(dA–O) 4-(dB–O) VA VB VO

CaMoO4 1.967 1.907 2.457 2.492 2.653 1.754 1.861 6.045 1.977
PbMoO4 2.112 1.907 2.561 2.619 2.785 1.833 2.021 4.886 1.727
BaMoO4 2.290 1.907 2.642 2.742 2.909 1.900 2.509 4.082 1.648
CaWO4 1.967 1.921 2.460 2.487 2.649 1.755 1.862 6.269 2.033
PbWO4 2.112 1.921 2.573 2.619 2.787 1.839 1.981 4.991 1.743
B

T
g
i
o
s
d
W
s
w
A

F
c
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s
s
m
c

aWO4 2.290 1.921 2.652 2.734

hese results could be attributed to the close connection of oxy-
en ions to the B-site ions as well as the A-site ions. Therefore,
t might be reasonable to investigate the relationships between
xygen bond valence and TCF for the entire composition of the
cheelite compound. The TCF of the specimens was strongly
ependent on the oxygen bond valence, as confirmed in Fig. 4.
ith an increase of oxygen bond valence, the average bond
trength of A- and B-site ions could be increased. This in turn,
ould increased the restoring force for recovering the tilting of
2BO tetrahedra, and TCF would thereupon decreased.

ig. 4. Dependence of TCF on oxygen bond valence in A2+B6+O4 scheelite
ompounds.

p
a
a
5
2
p
s

A

G

R

2.903 1.903 2.487 4.202 1.672

. Conclusions

For A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) specimens
intered at 800–1100 ◦C for 3 h, a single phase with a tetragonal
cheelite structure was detected, and the densities of the speci-
ens were higher than the 93% theoretical density for the given

omposition.
The dielectric constant (K) of A2+B6+O4 scheelite com-

ounds was not only dependent on the ionic polarizability, but
lso the packing fraction resulting from the effective ionic size
nd unit cell volume. With the increase of packing fraction from
4% (BaBO4) to 62% (CaBO4), the Q·f value increased from
1,620 GHz of BaWO4 to 76,990 GHz of CaWO4. The tem-
erature coefficients of the resonant frequencies (TCF) of the
pecimens decreased with increasing of oxygen bond valences.
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